Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 89(2): 212-222, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38622091

RESUMO

Quinone derivatives of triphenylphosphonium have proven themselves to be effective geroprotectors and antioxidants that prevent oxidation of cell components with participation of active free radicals - peroxide (RO2·), alkoxy (RO·), and alkyl (R·) radicals, as well as reactive oxygen species (superoxide anion, singlet oxygen). Their most studied representatives are derivatives of plastoquinone (SkQ1) and ubiquinone (MitoQ), which in addition to antioxidant properties also have a strong antibacterial effect. In this study, we investigated antibacterial properties of other quinone derivatives based on decyltriphenylphosphonium (SkQ3, SkQT, and SkQThy). We have shown that they, just like SkQ1, inhibit growth of various Gram-positive bacteria at micromolar concentrations, while being less effective against Gram-negative bacteria, which is associated with recognition of the triphenylphosphonium derivatives by the main multidrug resistance (MDR) pump of Gram-negative bacteria, AcrAB-TolC. Antibacterial action of SkQ1 itself was found to be dependent on the number of bacterial cells. It is important to note that the cytotoxic effect of SkQ1 on mammalian cells was observed at higher concentrations than the antibacterial action, which can be explained by (i) the presence of a large number of membrane organelles, (ii) lower membrane potential, (iii) spatial separation of the processes of energy generation and transport, and (iv) differences in the composition of MDR pumps. Differences in the cytotoxic effects on different types of eukaryotic cells may be associated with the degree of membrane organelle development, energy status of the cell, and level of the MDR pump expression.


Assuntos
Antineoplásicos , Benzoquinonas , Mitocôndrias , Animais , Mitocôndrias/metabolismo , Antioxidantes/farmacologia , Compostos Organofosforados/farmacologia , Plastoquinona/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Antineoplásicos/farmacologia , Mamíferos/metabolismo
2.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542129

RESUMO

The positive effects of female sex hormones, particularly estradiol and progesterone, have been observed in treatment of various pathologies. Acute kidney injury (AKI) is a common condition in hospitalized patients in which the molecular mechanisms of hormone action are poorly characterized. In this study, we investigated the influence of estradiol and progesterone on renal cells during ischemic injury. We performed both in vivo experiments on female and male rats and in vitro experiments on renal tubular cells (RTCs) obtained from the kidneys of intact animals of different sexes. Since mitochondria play an important role in the pathogenesis of AKI, we analyzed the properties of individual mitochondria in renal cells, including the area, roundness, mitochondrial membrane potential, and mitochondrial permeability transition pore (mPTP) opening time. We found that pre-treatment with progesterone or estradiol attenuated the severity of ischemia/reperfusion (I/R)-induced AKI in female rats, whereas in male rats, these hormones exacerbated renal dysfunction. We demonstrated that the mPTP opening time was higher in RTCs from female rats than that in those from male rats, which may be one of the reasons for the higher tolerance of females to ischemic injury. In RTCs from the kidneys of male rats, progesterone caused mitochondrial fragmentation, which can be associated with reduced cell viability. Thus, therapy with progesterone or estradiol displays quite different effects depending on sex, and could be only effective against ischemic AKI in females.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Humanos , Ratos , Masculino , Feminino , Animais , Progesterona/efeitos adversos , Estradiol/efeitos adversos , Rim/patologia , Isquemia/complicações , Traumatismo por Reperfusão/patologia , Injúria Renal Aguda/etiologia
3.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338779

RESUMO

The development of drugs for the treatment of acute kidney injury (AKI) that could suppress the excessive inflammatory response in damaged kidneys is an important clinical challenge. Recently, synaptamide (N-docosahexaenoylethanolamine) has been shown to exert anti-inflammatory and neurogenic properties. The aim of this study was to investigate the anti-inflammatory effect of synaptamide in ischemic AKI. For this purpose, we analyzed the expression of inflammatory mediators and the infiltration of different leukocyte populations into the kidney after injury, evaluated the expression of the putative synaptamide receptor G-protein-coupled receptor 110 (GPR110), and isolated a population of CD11b/c+ cells mainly representing neutrophils and macrophages using cell sorting. We also evaluated the severity of AKI during synaptamide therapy and the serum metabolic profile. We demonstrated that synaptamide reduced the level of pro-inflammatory interleukins and the expression of integrin CD11a in kidney tissue after injury. We found that the administration of synaptamide increased the expression of its receptor GPR110 in both total kidney tissue and renal CD11b/c+ cells that was associated with the reduced production of pro-inflammatory interleukins in these cells. Thus, we demonstrated that synaptamide therapy mitigates the inflammatory response in kidney tissue during ischemic AKI, which can be achieved through GPR110 signaling in neutrophils and a reduction in these cells' pro-inflammatory interleukin production.


Assuntos
Injúria Renal Aguda , Etanolaminas , Receptores Acoplados a Proteínas G , Traumatismo por Reperfusão , Animais , Ratos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Anti-Inflamatórios/metabolismo , Interleucinas/metabolismo , Rim/metabolismo , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
4.
Life Sci ; 338: 122359, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38135115

RESUMO

AIM: Neonatal sepsis remains one of the most dangerous conditions in the neonatal intensive care units. One of the organs affected by sepsis is the kidney, making acute kidney injury (AKI) a common complication of sepsis. Treatment of sepsis almost always involves antibiotic therapy, which by itself may cause some adverse effects, including nephrotoxicity. We analyzed the mutual effect of antibiotic therapy and sepsis on AKI in an experimental and clinical study in infants and neonatal rats. MATERIALS AND METHODS: We evaluated the influence of therapy with different antibiotics on the appearance of AKI markers (blood urea nitrogen (BUN), neutrophil gelatinase-associated lipocalin (NGAL), clusterin, interleukin-18 (IL-18), kidney injury molecule-1 (KIM-1), monocyte chemoattractant protein 1 (MCP-1), calbindin, glutation-S-transferase subtype π (GST-π)) and liver injury markers in newborns with or without clinical signs of sepsis in the intensive care unit. In parallel, we analyzed the development of AKI in experimental lipopolysaccharide (LPS)-induced systemic inflammation in newborn rats accompanied by antibiotic therapy. KEY FINDINGS: We showed that therapy with metronidazole or ampicillin in combination with sulbactam had a beneficial effect in children with suspected sepsis, resulting in a decrease in AKI markers levels. However, treatment of newborns with netilmicin, cefepime, linezolid, or imipenem in combination with cilastatin worsened kidney function in these patients. SIGNIFICANCE: This prospective study indicates which antibiotics are preferable in neonatal sepsis and which should be used with caution in view of the risk of AKI development.


Assuntos
Injúria Renal Aguda , Sepse Neonatal , Sepse , Humanos , Lactente , Criança , Ratos , Animais , Sepse Neonatal/complicações , Sepse Neonatal/tratamento farmacológico , Estudos Prospectivos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Antibacterianos/uso terapêutico , Sepse/complicações , Sepse/tratamento farmacológico , Biomarcadores
5.
Biochim Biophys Acta Mol Basis Dis ; 1869(3): 166622, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36526237

RESUMO

Acute kidney injury (AKI) is a frequent pathology with a high mortality rate after even a single AKI episode and a great risk of chronic kidney disease (CKD) development. To get insight into mechanisms of the AKI pathogenesis, there is a need to develop diverse experimental models of the disease. Photothrombosis is a widely used method for inducing ischemia in the brain. In this study, for the first time, we described photothrombosis-induced kidney ischemia as an appropriate model of AKI and obtained comprehensive characteristics of the photothrombotic lesion using micro-computed tomography (micro-CT) and histological techniques. In the ischemic area, we observed destruction of tubules, the loss of brush border and nuclei, connective tissue fibers disorganization, leukocyte infiltration, and hyaline casts formation. In kidney tissue and urine, we revealed increased levels in markers of proliferation and injury. The explicit long-term consequence of photothrombosis-induced kidney ischemia was renal fibrosis. Thus, we establish a new low invasive experimental model of AKI, which provides a reproducible local ischemic injury lesion. We propose our model of photothrombosis-induced kidney ischemia as a useful approach for investigating AKI pathogenesis, studying the mechanisms of kidney regeneration, and development of therapy against AKI and CKD.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Humanos , Rim/patologia , Microtomografia por Raio-X/efeitos adversos , Traumatismo por Reperfusão/patologia , Regeneração , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/patologia , Injúria Renal Aguda/patologia , Isquemia/patologia
6.
Antioxidants (Basel) ; 7(8)2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30096767

RESUMO

Neonatal sepsis is one of the major causes of mortality and morbidity in newborns, greatly associated with severe acute kidney injury (AKI) and failure. Handling of newborns with kidney damage can be significantly different compared to adults, and it is necessary to consider the individuality of an organism's response to systemic inflammation. In this study, we used lipopolysaccharide (LPS)-mediated acute kidney injury model to study mechanisms of kidney cells damage in neonatal and adult rats. We found LPS-associated oxidative stress was more severe in adults compared to neonates, as judged by levels of carbonylated proteins and products of lipids peroxidation. In both models, LPS-mediated septic simulation caused apoptosis of kidney cells, albeit to a different degree. Elevated levels of proliferating cell nuclear antigen (PCNA) in the kidney dropped after LPS administration in neonates but increased in adults. Renal fibrosis, as estimated by smooth muscle actin levels, was significantly higher in adult kidneys, whereas these changes were less profound in LPS-treated neonatal kidneys. We concluded that in LPS-mediated AKI model, renal cells of neonatal rats were more tolerant to oxidative stress and suffered less from long-term pathological consequences, such as fibrosis. In addition, we assume that by some features LPS administration simulates the conditions of accelerated aging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...